Pengantar Scala

1. Perkenalan

Dalam tutorial ini, kita akan melihat Scala - salah satu bahasa utama yang berjalan di Java Virtual Machine.

Kami akan mulai dengan fitur bahasa inti seperti nilai, variabel, metode, dan struktur kontrol. Kemudian, kita akan menjelajahi beberapa fitur lanjutan seperti fungsi tingkat tinggi, kari, kelas, objek, dan pencocokan pola.

Untuk mendapatkan gambaran umum tentang bahasa JVM, lihat panduan cepat kami untuk Bahasa JVM

2. Pengaturan Proyek

Dalam tutorial ini, kita akan menggunakan instalasi Scala standar dari //www.scala-lang.org/download/.

Pertama, mari tambahkan dependensi scala-library ke pom.xml kita. Artefak ini menyediakan pustaka standar untuk bahasa:

 org.scala-lang scala-library 2.12.7 

Kedua, mari tambahkan plugin scala-maven untuk menyusun, menguji, menjalankan, dan mendokumentasikan kode:

 net.alchim31.maven scala-maven-plugin 3.3.2    compile testCompile    

Maven memiliki artefak terbaru untuk scala-lang dan scala-maven-plugin.

Terakhir, kami akan menggunakan JUnit untuk pengujian unit.

3. Fitur Dasar

Di bagian ini, kita akan memeriksa fitur bahasa dasar melalui contoh. Kami akan menggunakan penerjemah Scala untuk tujuan ini.

3.1. Penerjemah

Interpreter adalah shell interaktif untuk menulis program dan ekspresi.

Ayo cetak “hello world” menggunakannya:

C:\>scala Welcome to Scala 2.12.6 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_92). Type in expressions for evaluation. Or try :help. scala> print("Hello World!") Hello World! scala>

Di atas, kami memulai penerjemah dengan mengetik 'scala' di baris perintah. Penerjemah memulai dan menampilkan pesan selamat datang yang diikuti dengan prompt.

Kemudian, kami mengetik ekspresi kami di prompt ini. Penerjemah membaca ekspresi tersebut, mengevaluasinya dan mencetak hasilnya. Kemudian, loop dan menampilkan prompt lagi.

Karena ini memberikan umpan balik langsung, penerjemah adalah cara termudah untuk memulai dengan bahasa tersebut. Oleh karena itu, mari kita gunakan untuk menjelajahi fitur bahasa dasar: ekspresi dan berbagai definisi.

3.2. Ekspresi

Pernyataan yang dapat dihitung apa pun adalah ekspresi .

Mari tulis beberapa ekspresi dan lihat hasilnya:

scala> 123 + 321 res0: Int = 444 scala> 7 * 6 res1: Int = 42 scala> "Hello, " + "World" res2: String = Hello, World scala> "zipZAP" * 3 res3: String = zipZAPzipZAPzipZAP scala> if (11 % 2 == 0) "even" else "odd" res4: String = odd

Seperti yang bisa kita lihat di atas, setiap ekspresi memiliki nilai dan tipe .

Jika ekspresi tidak memiliki apa pun untuk dikembalikan, ia mengembalikan nilai tipe Unit . Jenis ini hanya memiliki satu nilai: () . Ini mirip dengan kata kunci void di Jawa.

3.3. Definisi Nilai

Kata kunci val digunakan untuk mendeklarasikan nilai.

Kami menggunakannya untuk memberi nama hasil ekspresi:

scala> val pi:Double = 3.14 pi: Double = 3.14 scala> print(pi) 3.14 

Dengan melakukan itu, kami dapat menggunakan kembali hasilnya beberapa kali.

Nilai tidak bisa diubah . Oleh karena itu, kami tidak dapat menetapkannya kembali:

scala> pi = 3.1415 :12: error: reassignment to val pi = 3.1415 ^

3.4. Variabel Definisi

Jika kita perlu menetapkan kembali nilai, kita mendeklarasikannya sebagai variabel.

Kata kunci var digunakan untuk mendeklarasikan variabel:

scala> var radius:Int=3 radius: Int = 3

3.5. Metode Definisi

Kami mendefinisikan metode menggunakan kata kunci def . Mengikuti kata kunci, kami menentukan nama metode, deklarasi parameter, pemisah (titik dua) dan tipe kembalian. Setelah ini, kami menentukan pemisah (=) diikuti oleh tubuh metode.

Berbeda dengan Jawa, kita tidak menggunakan kembali kata kunci untuk mengembalikan hasilnya. Metode mengembalikan nilai ekspresi terakhir yang dievaluasi.

Mari tulis metode rata - rata untuk menghitung rata-rata dua angka:

scala> def avg(x:Double, y:Double):Double = { (x + y) / 2 } avg: (x: Double, y: Double)Double

Kemudian, mari gunakan metode ini:

scala> avg(10,20) res0: Double = 12.5 

Jika sebuah metode tidak mengambil parameter apa pun, kami dapat menghilangkan tanda kurung selama definisi dan pemanggilan. Selain itu, kami dapat menghilangkan tanda kurung jika badan hanya memiliki satu ekspresi.

Mari kita tulis metode coinToss tanpa parameter yang secara acak mengembalikan "Kepala" atau "Ekor":

scala> def coinToss = if (Math.random > 0.5) "Head" else "Tail" coinToss: String

Selanjutnya, mari panggil metode ini:

scala> println(coinToss) Tail scala> println(coinToss) Head

4. Struktur Pengendalian

Struktur kontrol memungkinkan kita untuk mengubah aliran kontrol dalam suatu program. Kami memiliki struktur kontrol berikut:

  • Ekspresi If-else
  • While loop dan do while loop
  • Untuk ekspresi
  • Cobalah ekspresi
  • Ekspresi yang cocok

Tidak seperti Java, kami tidak memiliki kata kunci lanjutkan atau putus . Kami memiliki kata kunci kembali . Namun, kita harus menghindari penggunaannya.

Instead of the switch statement, we have Pattern Matching via match expression. Additionally, we can define our own control abstractions.

4.1. if-else

The if-else expression is similar to Java. The else part is optional. We can nest multiple if-else expressions.

Since it is an expression, it returns a value. Therefore, we use it similar to the ternary operator (?:) in Java. In fact, the language does not have have the ternary operator.

Using if-else, let's write a method to compute the greatest common divisor:

def gcd(x: Int, y: Int): Int = { if (y == 0) x else gcd(y, x % y) }

Then, let's write a unit test for this method:

@Test def whenGcdCalledWith15and27_then3 = { assertEquals(3, gcd(15, 27)) }

4.2. While Loop

The while loop has a condition and a body. It repeatedly evaluates the body in a loop while the condition is true – the condition is evaluated at the beginning of each iteration.

Since it has nothing useful to return, it returns Unit.

Let's use the while loop to write a method to compute the greatest common divisor:

def gcdIter(x: Int, y: Int): Int = { var a = x var b = y while (b > 0) { a = a % b val t = a a = b b = t } a }

Then, let's verify the result:

assertEquals(3, gcdIter(15, 27))

4.3. Do While Loop

The do while loop is similar to the while loop except that the loop condition is evaluated at the end of the loop.

Using the do-while loop, let's write a method to compute factorial:

def factorial(a: Int): Int = { var result = 1 var i = 1 do { result *= i i = i + 1 } while (i <= a) result }

Next, let's verify the result:

assertEquals(720, factorial(6))

4.4. For Expression

The for expression is much more versatile than the for loop in Java.

It can iterate over single or multiple collections. Moreover, it can filter out elements as well as produce new collections.

Using the for expression, let's write a method to sum a range of integers:

def rangeSum(a: Int, b: Int) = { var sum = 0 for (i <- a to b) { sum += i } sum }

Here, a to b is a generator expression. It generates a series of values from a to b.

i <- a to b is a generator. It defines i as val and assigns it the series of values produced by the generator expression.

The body is executed for each value in the series.

Next, let's verify the result:

assertEquals(55, rangeSum(1, 10))

5. Functions

Scala is a functional language. Functions are first-class values here – we can use them like any other value type.

In this section, we'll look into some advanced concepts related to functions – local functions, higher-order functions, anonymous functions, and currying.

5.1. Local Functions

We can define functions inside functions. They are referred to as nested functions or local functions. Similar to the local variables, they are visible only within the function they are defined in.

Now, let's write a method to compute power using a nested function:

def power(x: Int, y:Int): Int = { def powNested(i: Int, accumulator: Int): Int = { if (i <= 0) accumulator else powNested(i - 1, x * accumulator) } powNested(y, 1) }

Next, let's verify the result:

assertEquals(8, power(2, 3))

5.2. Higher-Order Functions

Since functions are values, we can pass them as parameters to another function. We can also have a function return another function.

We refer to functions which operate on functions as higher-order functions. They enable us to work at a more abstract level. Using them, we can reduce code duplication by writing generalized algorithms.

Now, let's write a higher-order function to perform a map and reduce operation over a range of integers:

def mapReduce(r: (Int, Int) => Int, i: Int, m: Int => Int, a: Int, b: Int) = { def iter(a: Int, result: Int): Int = { if (a > b) { result } else { iter(a + 1, r(m(a), result)) } } iter(a, i) }

Here, r and m are parameters of Function type. By passing different functions, we can solve a range of problems, such as the sum of squares or cubes, and the factorial.

Next, let's use this function to write another function sumSquares that sums the squares of integers:

@Test def whenCalledWithSumAndSquare_thenCorrectValue = { def square(x: Int) = x * x def sum(x: Int, y: Int) = x + y def sumSquares(a: Int, b: Int) = mapReduce(sum, 0, square, a, b) assertEquals(385, sumSquares(1, 10)) }

Above, we can see that higher-order functions tend to create many small single-use functions. We can avoid naming them by using anonymous functions.

5.3. Anonymous Functions

An anonymous function is an expression that evaluates to a function. It is similar to the lambda expression in Java.

Let's rewrite the previous example using anonymous functions:

@Test def whenCalledWithAnonymousFunctions_thenCorrectValue = { def sumSquares(a: Int, b: Int) = mapReduce((x, y) => x + y, 0, x => x * x, a, b) assertEquals(385, sumSquares(1, 10)) }

In this example, mapReduce receives two anonymous functions: (x, y) => x + y and x => x * x.

Scala can deduce the parameter types from context. Therefore, we are omitting the type of parameters in these functions.

This results in a more concise code compared to the previous example.

5.4. Currying Functions

A curried function takes multiple argument lists, such as def f(x: Int) (y: Int). It is applied by passing multiple argument lists, as in f(5)(6).

It is evaluated as an invocation of a chain of functions. These intermediate functions take a single argument and return a function.

We can also partially specify argument lists, such as f(5).

Now, let's understand this with an example:

@Test def whenSumModCalledWith6And10_then10 = { // a curried function def sum(f : Int => Int)(a : Int, b : Int) : Int = if (a > b) 0 else f(a) + sum(f)(a + 1, b) // another curried function def mod(n : Int)(x : Int) = x % n // application of a curried function assertEquals(1, mod(5)(6)) // partial application of curried function // trailing underscore is required to // make function type explicit val sumMod5 = sum(mod(5)) _ assertEquals(10, sumMod5(6, 10)) }

Above, sum and mod each take two argument lists.

We pass the two arguments lists like mod(5)(6). This is evaluated as two function calls. First, mod(5) is evaluated, which returns a function. This is, in turn, invoked with argument 6. We get 1 as the result.

It is possible to partially apply the parameters as in mod(5). We get a function as a result.

Similarly, in the expression sum(mod(5)) _, we are passing only the first argument to sum function. Therefore, sumMod5 is a function.

The underscore is used as a placeholder for unapplied arguments. Since the compiler cannot infer that a function type is expected, we are using the trailing underscore to make the function return type explicit.

5.5. By-Name Parameters

A function can apply parameters in two different ways – by value and by name – it evaluates by-value arguments only once at the time of invocation. In contrast, it evaluates by-name arguments whenever they are referred. If the by-name argument is not used, it is not evaluated.

Scala uses by-value parameters by default. If the parameter type is preceded by arrow ( =>), it switches to by-name parameter.

Now, let's use it to implement the while loop:

def whileLoop(condition: => Boolean)(body: => Unit): Unit = if (condition) { body whileLoop(condition)(body) }

For the above function to work correctly, both parameters condition and body should be evaluated every time they are referred. Therefore, we are defining them as by-name parameters.

6. Class Definition

We define a class with the class keyword followed by the name of the class.

After the name, we can specify primary constructor parameters. Doing so automatically adds members with the same name to the class.

In the class body, we define the members – values, variables, methods, etc. They are public by default unless modified by the private or protected access modifiers.

We have to use the override keyword to override a method from the superclass.

Let's define a class Employee:

class Employee(val name : String, var salary : Int, annualIncrement : Int = 20) { def incrementSalary() : Unit = { salary += annualIncrement } override def toString = s"Employee(name=$name, salary=$salary)" }

Here, we are specifying three constructor parameters – name, salary, and annualIncrement.

Since we are declaring name and salary with val and var keywords, the corresponding members are public. On the other hand, we are not using val or var keyword for the annualIncrement parameter. Therefore, the corresponding member is private. As we are specifying a default value for this parameter, we can omit it while calling the constructor.

In addition to the fields, we are defining the method incrementSalary. This method is public.

Next, let's write a unit test for this class:

@Test def whenSalaryIncremented_thenCorrectSalary = { val employee = new Employee("John Doe", 1000) employee.incrementSalary() assertEquals(1020, employee.salary) }

6.1. Abstract Class

We use the keyword abstract to make a class abstract. It is similar to that in Java. It can have all the members that a regular class can have.

Furthermore, it can contain abstract members. These are members with just declaration and no definition, with their definition is provided in the subclass.

Similarly to Java, we cannot create an instance of an abstract class.

Now, let's illustrate the abstract class with an example.

First, let's create an abstract class IntSet to represent the set of integers:

abstract class IntSet { // add an element to the set def incl(x: Int): IntSet // whether an element belongs to the set def contains(x: Int): Boolean }

Next, let's create a concrete subclass EmptyIntSet to represent the empty set:

class EmptyIntSet extends IntSet { def contains(x : Int) = false def incl(x : Int) = new NonEmptyIntSet(x, this) }

Then, another subclass NonEmptyIntSet represent the non-empty sets:

class NonEmptyIntSet(val head : Int, val tail : IntSet) extends IntSet { def contains(x : Int) = head == x || (tail contains x) def incl(x : Int) = if (this contains x) { this } else { new NonEmptyIntSet(x, this) } }

Finally, let's write a unit test for NonEmptySet:

@Test def givenSetOf1To10_whenContains11Called_thenFalse = { // Set up a set containing integers 1 to 10. val set1To10 = Range(1, 10) .foldLeft(new EmptyIntSet() : IntSet) { (x, y) => x incl y } assertFalse(set1To10 contains 11) }

6.2. Traits

Traits correspond to Java interfaces with the following differences:

  • able to extend from a class
  • can access superclass members
  • can have initializer statements

We define them as we define classes but using the trait keyword. Besides, they can have the same members as abstract classes except for constructor parameters. Furthermore, they are meant to be added to some other class as a mixin.

Now, let's illustrate traits using an example.

First, let's define a trait UpperCasePrinter to ensure the toString method returns a value in the upper case:

trait UpperCasePrinter { override def toString = super.toString toUpperCase }

Then, let's test this trait by adding it to an Employee class:

@Test def givenEmployeeWithTrait_whenToStringCalled_thenUpper = { val employee = new Employee("John Doe", 10) with UpperCasePrinter assertEquals("EMPLOYEE(NAME=JOHN DOE, SALARY=10)", employee.toString) }

Classes, objects, and traits can inherit at most one class but any number of traits.

7. Object Definition

Objects are instances of a class. As we have seen in previous examples, we create objects from a class using the new keyword.

However, if a class can have only one instance, we need to prevent the creation of multiple instances. In Java, we use the Singleton pattern to achieve this.

For such cases, we have a concise syntax called object definition – similar to the class definition with one difference. Instead of using the class keyword, we use the object keyword. Doing so defines a class and lazily creates its sole instance.

We use object definitions to implement utility methods and singletons.

Let's define a Utils object:

object Utils { def average(x: Double, y: Double) = (x + y) / 2 }

Here, we are defining the class Utils and also creating its only instance.

We refer to this sole instance using its nameUtils. This instance is created the first time it is accessed.

We cannot create another instance of Utils using the new keyword.

Now, let's write a unit test for the Utils object:

assertEquals(15.0, Utils.average(10, 20), 1e-5)

7.1. Companion Object and Companion Class

If a class and an object definition have the same name, we call them as companion class and companion object respectively. We need to define both in the same file. Companion objects can access private members from their companion class and vice versa.

Unlike Java, we do not have static members. Instead, we use companion objects to implement static members.

8. Pattern Matching

Pattern matching matches an expression to a sequence of alternatives. Each of these begins with the keyword case. This is followed by a pattern, separator arrow (=>) and a number of expressions. The expression is evaluated if the pattern matches.

We can build patterns from:

  • case class constructors
  • variable pattern
  • the wildcard pattern _
  • literals
  • constant identifiers

Case classes make it easy to do pattern matching on objects. We add case keyword while defining a class to make it a case class.

Jadi, Pencocokan pola jauh lebih efektif daripada pernyataan switch di Java. Untuk alasan ini, ini adalah fitur bahasa yang banyak digunakan.

Sekarang, mari kita tulis metode Fibonacci menggunakan pencocokan pola:

def fibonacci(n:Int) : Int = n match  1 => 1 case x if x > 1 => fibonacci (x-1) + fibonacci(x-2) 

Selanjutnya, mari tulis pengujian unit untuk metode ini:

assertEquals(13, fibonacci(6))

9. Kesimpulan

Dalam tutorial ini, kami memperkenalkan bahasa Scala dan beberapa fitur utamanya. Seperti yang telah kita lihat, ini memberikan dukungan yang sangat baik untuk pemrograman imperatif, fungsional dan berorientasi objek.

Seperti biasa, kode sumber lengkap dapat ditemukan di GitHub.