Memahami Kebocoran Memori di Java

1. Perkenalan

Salah satu manfaat inti Java adalah manajemen memori otomatis dengan bantuan Pengumpul Sampah bawaan (atau singkatnya GC ). GC secara implisit menangani pengalokasian dan pengosongan memori dan dengan demikian mampu menangani sebagian besar masalah kebocoran memori.

Meskipun GC secara efektif menangani sebagian besar memori, ini tidak menjamin solusi yang sangat mudah untuk kebocoran memori. GC cukup pintar, tapi bukannya tanpa cela. Kebocoran memori masih bisa menyelinap bahkan dalam aplikasi pengembang yang teliti.

Mungkin masih ada situasi di mana aplikasi menghasilkan sejumlah besar objek yang berlebihan, sehingga menghabiskan sumber daya memori yang penting, terkadang mengakibatkan kegagalan aplikasi secara keseluruhan.

Kebocoran memori adalah masalah asli di Java. Dalam tutorial ini, kita akan melihat apa penyebab potensial dari kebocoran memori, bagaimana mengenalinya saat runtime, dan bagaimana menanganinya dalam aplikasi kita .

2. Apa Itu Kebocoran Memori

Kebocoran Memori adalah situasi saat ada objek yang ada di heap yang tidak lagi digunakan, tetapi pengumpul sampah tidak dapat menghapusnya dari memori dan, oleh karena itu, objek tersebut tidak perlu dipertahankan.

Kebocoran memori berdampak buruk karena memblokir sumber daya dan menurunkan kinerja sistem dari waktu ke waktu . Dan jika tidak ditangani, aplikasi pada akhirnya akan menghabiskan sumber dayanya, akhirnya diakhiri dengan java.lang.OutOfMemoryError yang fatal .

Ada dua jenis objek yang berada di memori Heap - direferensikan dan tidak direferensikan. Objek yang direferensikan adalah mereka yang masih memiliki referensi aktif dalam aplikasi sedangkan objek yang tidak direferensikan tidak memiliki referensi aktif.

Pengumpul sampah menghapus objek yang tidak direferensikan secara berkala, tetapi tidak pernah mengumpulkan objek yang masih direferensikan. Di sinilah kebocoran memori dapat terjadi:

Gejala Kebocoran Memori

  • Penurunan kinerja yang parah saat aplikasi terus berjalan untuk waktu yang lama
  • Kesalahan heap OutOfMemoryError di aplikasi
  • Aplikasi tiba-tiba dan aneh berhenti bekerja
  • Aplikasi terkadang kehabisan objek koneksi

Mari kita lihat lebih dekat beberapa skenario ini dan cara mengatasinya.

3. Jenis Kebocoran Memori di Java

Dalam aplikasi apa pun, kebocoran memori dapat terjadi karena berbagai alasan. Di bagian ini, kita akan membahas yang paling umum.

3.1. Kebocoran Memori Melalui Bidang Statis

Skenario pertama yang dapat menyebabkan potensi kebocoran memori adalah penggunaan variabel statis secara berlebihan.

Di Java, kolom statis memiliki masa aktif yang biasanya sesuai dengan seluruh masa pakai aplikasi yang berjalan (kecuali ClassLoader memenuhi syarat untuk pengumpulan sampah).

Mari buat program Java sederhana yang mengisi Daftar statis :

public class StaticTest { public static List list = new ArrayList(); public void populateList() { for (int i = 0; i < 10000000; i++) { list.add(Math.random()); } Log.info("Debug Point 2"); } public static void main(String[] args) { Log.info("Debug Point 1"); new StaticTest().populateList(); Log.info("Debug Point 3"); } }

Sekarang jika kita menganalisis memori Heap selama eksekusi program ini, kita akan melihat bahwa antara titik debug 1 dan 2, seperti yang diharapkan, memori heap meningkat.

Namun saat kita meninggalkan metode populateList () pada debug point 3, memori heap belum dikumpulkan seperti yang kita lihat dalam respons VisualVM ini:

Namun, dalam program di atas, pada baris nomor 2, jika kita hanya menjatuhkan kata kunci statis , maka itu akan membawa perubahan drastis pada penggunaan memori, respons Visual VM ini menunjukkan:

Bagian pertama hingga titik debug hampir sama dengan yang kita peroleh dalam kasus statis. Tapi kali ini setelah kita meninggalkan metode populateList () , semua memori dari daftar tersebut dikumpulkan sampah karena kita tidak memiliki referensi ke sana .

Oleh karena itu kita perlu sangat memperhatikan penggunaan variabel statis kita . Jika koleksi atau objek besar dideklarasikan sebagai statis , maka mereka tetap dalam memori selama masa pakai aplikasi, sehingga memblokir memori vital yang dapat digunakan di tempat lain.

Bagaimana Mencegahnya?

  • Minimalkan penggunaan variabel statis
  • Saat menggunakan singletons, andalkan implementasi yang memuat objek dengan malas alih-alih memuat dengan penuh semangat

3.2. Melalui Sumber Daya Tidak Tertutup

Setiap kali kami membuat koneksi baru atau membuka aliran, JVM mengalokasikan memori untuk sumber daya ini. Beberapa contoh termasuk koneksi database, aliran input, dan objek sesi.

Lupa menutup sumber daya ini dapat memblokir memori, sehingga menjauhkannya dari jangkauan GC. Ini bahkan dapat terjadi dalam kasus pengecualian yang mencegah eksekusi program mencapai pernyataan yang menangani kode untuk menutup sumber daya ini.

Dalam kedua kasus, koneksi terbuka yang tersisa dari sumber daya menghabiskan memori , dan jika kita tidak mengatasinya, mereka dapat menurunkan kinerja dan bahkan dapat mengakibatkan OutOfMemoryError .

Bagaimana Mencegahnya?

  • Selalu gunakan blok terakhir untuk menutup sumber daya
  • Kode (bahkan di blok terakhir ) yang menutup sumber daya itu sendiri seharusnya tidak memiliki pengecualian
  • Saat menggunakan Java 7+, kita dapat menggunakan blok try -with-resources

3.3. Yang tidak benar equals () dan hashCode () Implementasi

Saat menentukan class baru, kesalahan yang paling umum adalah tidak menulis metode yang diganti dengan benar untuk metode equals () dan hashCode () .

HashSet dan HashMap menggunakan metode ini dalam banyak operasi, dan jika tidak diganti dengan benar, metode ini dapat menjadi sumber potensi masalah kebocoran memori.

Mari kita ambil contoh kelas Person yang sepele dan menggunakannya sebagai kunci dalam HashMap :

public class Person { public String name; public Person(String name) { this.name = name; } }

Sekarang kita akan memasukkan objek Person duplikat ke dalam Peta yang menggunakan kunci ini.

Ingatlah bahwa Peta tidak dapat berisi kunci duplikat:

@Test public void givenMap_whenEqualsAndHashCodeNotOverridden_thenMemoryLeak() { Map map = new HashMap(); for(int i=0; i<100; i++) { map.put(new Person("jon"), 1); } Assert.assertFalse(map.size() == 1); }

Here we're using Person as a key. Since Map doesn't allow duplicate keys, the numerous duplicate Person objects that we've inserted as a key shouldn't increase the memory.

But since we haven't defined proper equals() method, the duplicate objects pile up and increase the memory, that's why we see more than one object in the memory. The Heap Memory in VisualVM for this looks like:

However, if we had overridden the equals() and hashCode() methods properly, then there would only exist one Person object in this Map.

Let's take a look at proper implementations of equals() and hashCode() for our Person class:

public class Person { public String name; public Person(String name) { this.name = name; } @Override public boolean equals(Object o) { if (o == this) return true; if (!(o instanceof Person)) { return false; } Person person = (Person) o; return person.name.equals(name); } @Override public int hashCode() { int result = 17; result = 31 * result + name.hashCode(); return result; } }

And in this case, the following assertions would be true:

@Test public void givenMap_whenEqualsAndHashCodeNotOverridden_thenMemoryLeak() { Map map = new HashMap(); for(int i=0; i<2; i++) { map.put(new Person("jon"), 1); } Assert.assertTrue(map.size() == 1); }

After properly overriding equals() and hashCode(), the Heap Memory for the same program looks like:

Another example is of using an ORM tool like Hibernate, which uses equals() and hashCode() methods to analyze the objects and saves them in the cache.

The chances of memory leak are quite high if these methods are not overridden because Hibernate then wouldn't be able to compare objects and would fill its cache with duplicate objects.

How to Prevent It?

  • As a rule of thumb, when defining new entities, always override equals() and hashCode() methods
  • It's not just enough to override, but these methods must be overridden in an optimal way as well

For more information, visit our tutorials Generate equals() and hashCode() with Eclipse and Guide to hashCode() in Java.

3.4. Inner Classes That Reference Outer Classes

This happens in the case of non-static inner classes (anonymous classes). For initialization, these inner classes always require an instance of the enclosing class.

Every non-static Inner Class has, by default, an implicit reference to its containing class. If we use this inner class' object in our application, then even after our containing class' object goes out of scope, it will not be garbage collected.

Consider a class that holds the reference to lots of bulky objects and has a non-static inner class. Now when we create an object of just the inner class, the memory model looks like:

However, if we just declare the inner class as static, then the same memory model looks like this:

This happens because the inner class object implicitly holds a reference to the outer class object, thereby making it an invalid candidate for garbage collection. The same happens in the case of anonymous classes.

How to Prevent It?

  • If the inner class doesn't need access to the containing class members, consider turning it into a static class

3.5. Through finalize() Methods

Use of finalizers is yet another source of potential memory leak issues. Whenever a class' finalize() method is overridden, then objects of that class aren't instantly garbage collected. Instead, the GC queues them for finalization, which occurs at a later point in time.

Additionally, if the code written in finalize() method is not optimal and if the finalizer queue cannot keep up with the Java garbage collector, then sooner or later, our application is destined to meet an OutOfMemoryError.

To demonstrate this, let's consider that we have a class for which we have overridden the finalize() method and that the method takes a little bit of time to execute. When a large number of objects of this class gets garbage collected, then in VisualVM, it looks like:

However, if we just remove the overridden finalize() method, then the same program gives the following response:

How to Prevent It?

  • We should always avoid finalizers

For more detail about finalize(), read section 3 (Avoiding Finalizers) in our Guide to the finalize Method in Java.

3.6. Interned Strings

The Java String pool had gone through a major change in Java 7 when it was transferred from PermGen to HeapSpace. But for applications operating on version 6 and below, we should be more attentive when working with large Strings.

If we read a huge massive String object, and call intern() on that object, then it goes to the string pool, which is located in PermGen (permanent memory) and will stay there as long as our application runs. This blocks the memory and creates a major memory leak in our application.

The PermGen for this case in JVM 1.6 looks like this in VisualVM:

In contrast to this, in a method, if we just read a string from a file and do not intern it, then the PermGen looks like:

How to Prevent It?

  • The simplest way to resolve this issue is by upgrading to latest Java version as String pool is moved to HeapSpace from Java version 7 onwards
  • If working on large Strings, increase the size of the PermGen space to avoid any potential OutOfMemoryErrors:
    -XX:MaxPermSize=512m

3.7. Using ThreadLocals

ThreadLocal (discussed in detail in Introduction to ThreadLocal in Java tutorial) is a construct that gives us the ability to isolate state to a particular thread and thus allows us to achieve thread safety.

When using this construct, each thread will hold an implicit reference to its copy of a ThreadLocal variable and will maintain its own copy, instead of sharing the resource across multiple threads, as long as the thread is alive.

Despite its advantages, the use of ThreadLocal variables is controversial, as they are infamous for introducing memory leaks if not used properly. Joshua Bloch once commented on thread local usage:

“Sloppy use of thread pools in combination with sloppy use of thread locals can cause unintended object retention, as has been noted in many places. But placing the blame on thread locals is unwarranted.”

Memory leaks with ThreadLocals

ThreadLocals are supposed to be garbage collected once the holding thread is no longer alive. But the problem arises when ThreadLocals are used along with modern application servers.

Modern application servers use a pool of threads to process requests instead of creating new ones (for example the Executor in case of Apache Tomcat). Moreover, they also use a separate classloader.

Since Thread Pools in application servers work on the concept of thread reuse, they are never garbage collected — instead, they're reused to serve another request.

Now, if any class creates a ThreadLocal variable but doesn't explicitly remove it, then a copy of that object will remain with the worker Thread even after the web application is stopped, thus preventing the object from being garbage collected.

How to Prevent It?

  • It's a good practice to clean-up ThreadLocals when they're no longer used — ThreadLocals provide the remove() method, which removes the current thread's value for this variable
  • Do not use ThreadLocal.set(null) to clear the value — it doesn't actually clear the value but will instead look up the Map associated with the current thread and set the key-value pair as the current thread and null respectively
  • It's even better to consider ThreadLocal as a resource that needs to be closed in a finally block just to make sure that it is always closed, even in the case of an exception:
    try { threadLocal.set(System.nanoTime()); //... further processing } finally { threadLocal.remove(); }

4. Other Strategies for Dealing With Memory Leaks

Although there is no one-size-fits-all solution when dealing with memory leaks, there are some ways by which we can minimize these leaks.

4.1. Enable Profiling

Java profilers are tools that monitor and diagnose the memory leaks through the application. They analyze what's going on internally in our application — for example, how memory is allocated.

Using profilers, we can compare different approaches and find areas where we can optimally use our resources.

We have used Java VisualVM throughout section 3 of this tutorial. Please check out our Guide to Java Profilers to learn about different types of profilers, like Mission Control, JProfiler, YourKit, Java VisualVM, and the Netbeans Profiler.

4.2. Verbose Garbage Collection

By enabling verbose garbage collection, we're tracking detailed trace of the GC. To enable this, we need to add the following to our JVM configuration:

-verbose:gc

By adding this parameter, we can see the details of what's happening inside GC:

4.3. Use Reference Objects to Avoid Memory Leaks

We can also resort to reference objects in Java that comes in-built with java.lang.ref package to deal with memory leaks. Using java.lang.ref package, instead of directly referencing objects, we use special references to objects that allow them to be easily garbage collected.

Reference queues are designed for making us aware of actions performed by the Garbage Collector. For more information, read Soft References in Java Baeldung tutorial, specifically section 4.

4.4. Eclipse Memory Leak Warnings

For projects on JDK 1.5 and above, Eclipse shows warnings and errors whenever it encounters obvious cases of memory leaks. So when developing in Eclipse, we can regularly visit the “Problems” tab and be more vigilant about memory leak warnings (if any):

4.5. Benchmarking

We can measure and analyze the Java code's performance by executing benchmarks. This way, we can compare the performance of alternative approaches to do the same task. This can help us choose a better approach and may help us to conserve memory.

For more information about benchmarking, please head over to our Microbenchmarking with Java tutorial.

4.6. Code Reviews

Finally, we always have the classic, old-school way of doing a simple code walk-through.

In some cases, even this trivial looking method can help in eliminating some common memory leak problems.

5. Conclusion

In layman's terms, we can think of memory leak as a disease that degrades our application's performance by blocking vital memory resources. And like all other diseases, if not cured, it can result in fatal application crashes over time.

Kebocoran memori sulit dipecahkan dan menemukannya membutuhkan penguasaan dan perintah yang rumit atas bahasa Java. Saat menangani kebocoran memori, tidak ada solusi yang cocok untuk semua, karena kebocoran dapat terjadi melalui berbagai peristiwa yang berbeda.

Namun, jika kita menggunakan praktik terbaik dan secara teratur melakukan penelusuran kode dan pembuatan profil yang ketat, maka kita dapat meminimalkan risiko kebocoran memori dalam aplikasi kita.

Seperti biasa, potongan kode yang digunakan untuk menghasilkan tanggapan VisualVM yang digambarkan dalam tutorial ini tersedia di GitHub.